

Paper 2 Computational thinking, algorithms and programming (J277/02)

2.1 Algorithms

2.1.1 Computational

Thinking

Understand the principles of computational

thinking (abstraction, decomposition, algorithmic

thinking)

2.1.2 Designing,

Creating and Refining

Algorithms

Design and refine algorithms using: Pseudocode,

Flowcharts, Reference language / Python

 Identify common errors and use Trace tables

2.1.3 Searching and

Sorting Algorithms

Understand and apply searching and sorting

algorithms

 Searching Algorithms: Linear, Binary

 Sorting Algorithms: Bubble, Merge, Insert

2.2 Programming fundamentals

2.2.1 Programming

Constructs

Use variables, constants, operators, inputs,

outputs, and assignments in programming

 Use of the 3 programming concepts: Sequence,

Selection and Iteration (Count and Condition

controlled Loops)

 Arithmetic Operators (= - * / MOD DIV ^)

 Comparison Operators (== != < <= > >=)

 Boolean Operators (AND, OR, NOT)

2.2.2 Data Types Understand and apply different data types

(integer, real, Boolean, character, string, casting)

2.2.3 Additional

Programming

Techniques

Use basic string manipulation (concatenation,

slicing)

 File handling (Open, Read, Write, Close)

 Use of SQL to search for data (SELECT FROM

WHERE)

 Use of Arrays/Lists when solving problems

 Use of Sub programs (functions and procedures)

 Random number generation

2.3 Producing Robust Programs

2.3.1 Defensive Design Understand defensive design considerations

(Anticipating misuse, authentication)

 Input validation

 Maintainability: Use of sub programs, indentation,

commenting, naming conventions

2.3.2 Testing Understand the purpose of testing and the

different types (Iterative, Final/terminal)

 Select suitable test data (normal, boundary,

Invalid/erroneous)

2.4 Boolean Logic

2.4.1 Boolean Logic Simple logic diagrams using operators (AND, OR,

NOT)

 Complete Truth Tables

 Combining Boolean operators using AND,

OR,NOT

 Apply Boolean operators (AND, OR, NOT) in truth

tables to solve problems

2.5 Programming Languages and IDEs

2.5.1 Languages Characteristics and purpose of high- and low-

level languages

 Purpose of translators

 Characteristics of a compiler and an interpreter

2.5.2 Integrated

Development

Environments (IDEs)

Use IDE tools (editors, error diagnostics, runtime

environment, translators)

